Part Number Hot Search : 
9S12DG 68HC1 2R333 R3520 STK7563A 100EL1 RT3C99M LUR3333
Product Description
Full Text Search
 

To Download MJE18204-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode ? npn bipolar power transistor for electronic light ballast and switching power supply applications the mje/mjf18204 have an application specific stateoftheart die dedicated to the electronic ballast (alight ballasto) and power supply applications. ? improved global efficiency due to low base drive requirements: high and flat dc current gain h fe fast switching no coil required in base circuit for fast turnoff (no current tail) ? full characterization at 125  c ? on semiconductor a6 sigmao philosophy provides tight and reproducible parametric distributions ? two package choices: standard to220 or isolated to220 ??????????????????????? ??????????????????????? maximum ratings ????????????? ????????????? rating ??? ??? symbol ???? ???? mje18204 ???? ???? mjf18204 ??? ??? unit ????????????? ????????????? collectoremitter voltage ??? ??? v ceo ??????? ??????? 600 ??? ??? vdc ????????????? ????????????? collectorbase voltage ??? ??? v cbo ??????? ??????? 1200 ??? ??? vdc ????????????? ????????????? collectoremitter voltage ??? ??? v ces ??????? ??????? 1200 ??? ??? vdc ????????????? ????????????? emitterbase voltage ??? ??? v ebo ??????? ??????? 10 ??? ??? vdc ????????????? ? ??????????? ? ????????????? collector current e continuous e peak (1) ??? ? ? ? ??? i c i cm ??????? ? ????? ? ??????? 5 10 ??? ? ? ? ??? adc ????????????? ????????????? base current e continuous e peak (1) ??? ??? i b i bm ??????? ??????? 2 4 ??? ??? adc ????????????? ? ??????????? ? ? ??????????? ? ????????????? rms isolation voltage (2) per figure 22 (for 1 sec, r.h. 30%) per figure 23 t c = 25 c per figure 24 ??? ? ? ? ? ? ? ??? v isol1 v isol2 v isol3 ???? ? ?? ? ? ?? ? ???? ???? ? ?? ? ? ?? ? ???? 4500 3500 1500 ??? ? ? ? ? ? ? ??? volts ????????????? ????????????? *total device dissipation @ t c = 25 c *derate above 25  c ??? ??? p d ???? ???? 75 0.6 ???? ???? 35 0.28 ??? ??? watt w/  c ????????????? ????????????? operating and storage temperature ??? ??? t j , t stg ??????? ??????? 65 to 150 ??? ???  c ??????????????????????? ??????????????????????? thermal characteristics ????????????? ????????????? rating ??? ??? symbol ???? ???? mje18204 ???? ???? mjf18204 ??? ??? unit ????????????? ? ??????????? ? ????????????? thermal resistance e junction to case e junction to ambient ??? ? ? ? ??? r q jc r q ja ???? ? ?? ? ???? 1.65 62.5 ???? ? ?? ? ???? 3.55 62.5 ??? ? ? ? ???  c/w ????????????? ? ??????????? ? ????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??? ? ? ? ??? t l ??????? ? ????? ? ??????? 260 ??? ? ? ? ???  c (1) pulse test: pulse width = 5 ms, duty cycle  10%. (2) proper strike and creepage distance must be provided. on semiconductor  ? semiconductor components industries, llc, 2001 april, 2001 rev. 2 1 publication order number: mje18204/d mje18204 mjf18204 power transistors 5 amperes 1200 volts 35 and 75 watts case 221a09 to220ab case 221d02 to220 fullpack
mje18204 mjf18204 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ??? ??? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ? ??????????????????????????????? ? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter voltage (i c = 1 ma, i b = 0) ????? ? ??? ? ????? v ceo ??? ? ? ? ??? 600 ???? ? ?? ? ???? 660 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) (i c = 200 ma, l = 25 mh, r = 2 w ) ????? ? ??? ? ????? v ceo(sus) v cer(sus) ??? ? ? ? ??? 550 600 ???? ? ?? ? ???? 630 700 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma, i e = 0) ????? ????? v cbo ??? ??? 1200 ???? ???? 1300 ???? ???? ??? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma, i c = 0) ????? ? ??? ? ????? v ebo ??? ? ? ? ??? 10 ???? ? ?? ? ???? 12.9 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? collector cutoff current (v ce = 600 v, i b = 0) collector cutoff current (v ce = 550 v, i b = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? i ceo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 200 2000 ??? ? ? ? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector cutoff current (v ce = rated v ces , v be = 0) collector cutoff current (v ce = 1000 v, v be = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c @ t c = 125 c ????? ? ??? ? ????? i ces ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 500 100 ??? ? ? ? ??? m adc ??????????????????? ??????????????????? collector cutoff current (v cb = rated v cb , i e = 0) ????? ????? i cbo ??? ??? ???? ???? ???? ???? 100 ??? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 10 vdc, i c = 0) ????? ? ??? ? ????? i ebo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 1 adc, i b = 0.1 adc) (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ? ??? ? ????? v be(sat) ??? ? ? ? ? ? ? ??? ???? ? ?? ? ? ?? ? ???? 0.83 0.92 ???? ? ?? ? ? ?? ? ???? 1.1 1.25 ??? ? ? ? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? collectoremitter saturation voltage (i c = 1 adc, i b = 0.1 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v ce(sat) ??? ? ? ? ??? ???? ? ?? ? ???? 0.3 0.7 ???? ? ?? ? ???? 1 1.25 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.3 0.8 ???? ? ?? ? ???? 0.6 1.25 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 0.5 adc, v ce = 3 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? h fe ??? ? ? ? ??? 18 ???? ? ?? ? ???? 23 ???? ? ?? ? ???? 35 ??? ? ? ? ??? e ??????????????? ? ????????????? ? ??????????????? (i c = 1 adc, v ce = 1 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? 10 8 ???? ? ?? ? ???? 13 ???? ? ?? ? ???? 22 ??? ? ? ? ??? ??????????????? ??????????????? (i c = 2 adc, v ce = 1 vdc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? 5 4 ???? ???? 8 6 ???? ???? ??? ??? e ??????????????? ? ????????????? ? ??????????????? (i c = 5 madc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? 10 ???? ? ?? ? ???? 25 33 ???? ? ?? ? ???? ??? ? ? ? ??? e ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? current gain bandwidth (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ????? ????? f t ??? ??? ???? ???? 13 ???? ???? ??? ??? mhz ??????????????????? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ????? ????? c ob ??? ??? ???? ???? ???? ???? 200 ??? ??? pf ??????????????????? ? ????????????????? ? ??????????????????? input capacitance (v eb = 8 vdc) ????? ? ??? ? ????? c ib ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 2000 ??? ? ? ? ??? pf ????????????????????????????????? dynamic saturation voltage ???????? ? ?????? ? ???????? dynamic saturation voltage: ????? ? ??? ? ????? i c = 2 adc i b1 = 660 madc ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c ????? ? ??? ? ????? v ce(dsat) ??? ? ? ? ??? ???? ? ?? ? ???? 2.5 ???? ? ?? ? ???? ??? ? ? ? ??? v ???????? ???????? v o lt age: determined 1 m s and 3 m s res p ectively ????? ????? i b1 = 660 madc v cc = 300 v ???? ???? ????? ????? @ t c = 125 c ????? ????? ??? ??? ???? ???? 7.5 ???? ???? ??? ??? ???????? ???????? 3 m s respectively after rising i b1 reaches 90% of final ????? ????? i c = 2 adc i b1 =04adc ???? ???? @ 3 m s ????? ????? @ t c = 25 c ????? ????? ??? ??? ???? ???? 7 ???? ???? ??? ??? ???????? ???????? reaches 90% of final i b1 ????? ????? i b1 = 0.4 adc v cc = 300 v ???? ???? ????? ????? @ t c = 125 c ????? ????? ??? ??? ???? ???? 15 ???? ???? ??? ???
mje18204 mjf18204 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) continued ??????????????????? ??????????????????? characteristic ????? ????? symbol ??? ??? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ? ??????????????????????????????? ? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 20 m s) ???????? ???????? turnon time ???????? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 = 1 adc ????? ????? @ t c = 25 c ????? ????? t on ??? ??? ???? ???? 105 ???? ???? 175 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 1 adc v cc = 300 vdc ????? ????? @ t c = 25 c ????? ????? t off ??? ??? ???? ???? 1.75 ???? ???? 2.5 ??? ??? m s ???????? ???????? turnon time ???????? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 =04adc ????? ????? @ t c = 25 c ????? ????? t on ??? ??? ???? ???? 95 ???? ???? 200 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.4 adc v cc = 300 vdc ????? ????? @ t c = 25 c ????? ????? t off ??? ??? ???? ???? 3.5 ???? ???? 4.5 ??? ??? m s ???????? ???????? turnon time ???????? ???????? i 0 7 adc i 50 madc ????? ????? @t 25 c ????? ????? t d ??? ??? ???? ???? 70 ???? ???? 150 ??? ??? ns ???????? ???????? ???????? ???????? i c = 0.7 adc, i b1 = 50 madc i b2 = 0.4 adc ????? ????? @ t c = 25 c ????? ????? t r ??? ??? ???? ???? 210 ???? ???? 400 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0 . 4 adc v cc = 125 vdc pw=70 m s ????? ????? @t 25 c ????? ????? t s ??? ??? ???? ???? 0.9 ???? ???? 1.2 ??? ??? m s ???????? ???????? ???????? ???????? pw = 70 m s ????? ????? @ t c = 25 c ????? ????? t f ??? ??? ???? ???? 275 ???? ???? 450 ??? ??? ns ????????????????????????????????? ? ??????????????????????????????? ? ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200 m h) ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? t f ??? ? ? ? ??? ???? ? ?? ? ???? 110 95 ???? ? ?? ? ???? 175 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 1 adc i b1 = 0.1 adc i b2 = 0 . 5 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? t s ??? ? ? ? ??? ???? ? ?? ? ???? 1.35 1.9 ???? ? ?? ? ???? 2 ??? ? ? ? ??? m s ???????? ???????? crossover time ???????? ???????? i b2 = 0 . 5 adc ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? t c ??? ??? ???? ???? 150 115 ???? ???? 250 ??? ??? ns ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? t f ??? ? ? ? ??? ???? ? ?? ? ???? 120 180 ???? ? ?? ? ???? 200 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 2 adc i b1 = 0.4 adc i b2 = 1 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? t s ??? ? ? ? ??? ???? ? ?? ? ???? 1.9 2.35 ???? ? ?? ? ???? 2.75 ??? ? ? ? ??? m s ???????? ???????? crossover time ???????? ???????? i b2 = 1 adc ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? t c ??? ??? ???? ???? 190 180 ???? ???? 300 ??? ??? ns ???????? ???????? fall time ???????? ???????? i c = 2 adc ????? ????? @ t c = 25 c ????? ????? t f ??? ??? ???? ???? 185 ???? ???? 300 ??? ??? ns ???????? ???????? storage time ???????? ???????? i c = 2 adc i b1 = 0.4 adc i 04ad ????? ????? @ t c = 25 c ????? ????? t s ??? ??? ???? ???? 4 ???? ???? 5 ??? ??? m s ???????? ???????? crossover time ???????? ???????? b1 i b2 = 0.4 adc ????? ????? @ t c = 25 c ????? ????? t c ??? ??? ???? ???? 350 ???? ???? 500 ??? ??? ns
mje18204 mjf18204 http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 3 volts 100 10 1 10 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 3 v figure 3. dc current gain @ 5 volts 100 10 1 10 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 5 v figure 4. collector saturation region 2 0 10000 1000 100 10 i b , base current (ma) i c = 1 a v ce , voltage (volts) 1 4 a 3 a 2 a 1.5 a figure 5. collectoremitter saturation voltage 10 1 0.01 10 1 0.1 0.01 i c , collector current (amps) i c /i b = 5 v ce , voltage (volts) 0.1 i c /i b = 10 t j = 125 c t j = 25 c figure 6. baseemitter saturation region 1.5 0 10 0.1 0.01 i c , collector current (amps) v be , voltage (volts) 1 t j = 125 c t j = -20 c 1 0.5 i c /i b = 5 i c /i b = 10 t j = 25 c t j = 25 c t j = 25 c t j = 25 c
mje18204 mjf18204 http://onsemi.com 5 t, time (ns) typical static characteristics figure 7. capacitance 10000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 1000 t j = 25 c f (test) = 1 mhz 100 c ib (pf) c ob (pf) figure 8. resistive switching, t on 1600 0 5 1 0.5 i c , collector current (amps) 1.5 800 i c /i b = 10 i c /i b = 5 i b1 = i b2 v cc = 300 v pw = 20 m s 1400 1200 1000 600 400 200 2 2.5 3 3.5 4 4.5 figure 9. resistive switching, t off 8 5 1 i c , collector current (amps) 6 t, time (s) m 7 2 t j = 125 c t j = 25 c i c /i b = 10 i c /i b = 5 4 3 5 1 0.5 1.5 2 2.5 3 3.5 4 4.5 i b1 = i b2 v cc = 300 v pw = 20 m s t, time (ns) figure 10. inductive storage time, t si 6 3 2 3.5 1 0.5 i c , collector current (amps) 1.5 4 t j = 125 c t j = 25 c i c /i b = 5 5 3 2.5 2 i c /i b = 10 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 11. inductive storage time, t si (h fe ) 6 3 15 7 3 h fe , forced gain 13 4 9 t j = 125 c t j = 25 c , storage time ( t si m s) 5 511 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h i c = 1 a i c = 2 a figure 12. inductive switching, t c and t fi @ i c /i b = 5 1500 0 3 1 0 i c , collector current (amps) 2 t, time (ns) 1000 500 t j = 125 c t j = 25 c t c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h t j = 125 c t j = 25 c t c t fi t fi
mje18204 mjf18204 http://onsemi.com 6 typical static characteristics figure 13. inductive switching, t c and t fi @ i c /i b = 10 1100 100 i c , collector current (amps) t, time (ns) 600 t j = 125 c t j = 25 c 3 04 2 t c t fi i boff = i b2 v cc = 15 v v z = 300 v l c = 200 m h 1000 900 800 700 200 500 400 300 1 figure 14. inductive fall time 680 80 15 7 3 h fe , forced gain 480 t fi , fall time (ns) 280 9 t j = 125 c t j = 25 c 11 513 i c = 2 a i boff = i b2 v cc = 15 v v z = 300 v l c = 200 m h i c = 1 a figure 15. inductive crossover time 1200 600 200 15 5 3 h fe , forced gain 1000 t c , crossover time (ns) 7 t j = 125 c t j = 25 c 91011 800 400 4 6 8 121314 i c = 2 a i c = 1 a i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 16. bvcer = f (r be ) 1400 600 1000 100 10 r be ( w ) bvcer (volts) t j = 25 c bvcer (volts) @ 10 ma 1300 800 bvcer(sus) @ 200 ma 1200 1100 1000 900 700 figure 17. forward bias safe operating area 100 0.01 1000 10 v ce , collector-emitter voltage (volts) figure 18. reverse bias switching safe operating area 6 2 0 1200 400 v ce , collector-emitter voltage (volts) 4 100 600 1 0.1 i c , collector current (amps) i c , collector current (amps) 5 ms 1 ms 10 m s 1 m s 0 v -1.5 v -5 v t c 125 c gain 5 l c = 4 mh 10 800 MJE18204-Dc mjf18204-dc 5 3 1 500 700 1000 900 1100 extended soa
mje18204 mjf18204 http://onsemi.com 7 power derating factor figure 19. forward bias power derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable op- eration; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 19 is based on t c = 25 c; t j (pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. se- cond breakdown limitations do not derate the same as ther- mal limitations. allowable current at the voltages shown on figure 16 may be found at any case temperature by using the appropriate curve on figure 18. t j (pk) may be calculated from the data in figures 21 and 22. at any case temperatures, thermal limitations will re- duce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simulta- neously during turnoff with the basetoemitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 17). this rating is veri- fied under clamped conditions so that the device is never subjected to an avalanche mode. t c , case temperature ( c) 1.0 0.8 0.6 0.4 0.2 0 160 140 120 100 80 60 40 20 second breakdown derating thermal derating typical static characteristics figure 20. dynamic saturation voltage measurements figure 21. inductive switching measurements typical switching characteristics (i b1 = i b2 for all curves) time 10 4 0 8 2 06 8 6 2 4 9 7 5 3 1 13 5 7 v ce 0 v i b 90% i b 1 m s 3 m s dyn 1 m s dyn 3 m s i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp time
mje18204 mjf18204 http://onsemi.com 8 typical switching characteristics (i b1 = i b2 for all curves) table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c (p k ) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a 1 m f i c peak v ce peak v ce i b i b 1 i b 2 r b2 r b1
mje18204 mjf18204 http://onsemi.com 9 0.01 t, time (ms) figure 22. typical thermal response (z q jc (t)) for mje18204 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 1.65 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.2 0.02 0.1 d = 0.5 single pulse 0.01 0.1 1 10 100 1000 0.1 1 0.01 figure 23. typical thermal response (z q jc (t)) for mjf18204 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 3.55 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.2 0.02 0.1 single pulse 0.01 0.1 1 10 100 100000 0.1 1 1000 10000 0.05 0.05 d = 0.5 t, time (ms) typical thermal response (i b1 = i b2 for all curves)
mje18204 mjf18204 http://onsemi.com 10 mounted fully isolated package leads heatsink 0.110 min figure 24. screw or clip mounting position for isolation test number 1 *measurement made between leads and heatsink with all leads shorted together clip mounted fully isolated package leads heatsink clip 0.107 min mounted fully isolated package leads heatsink 0.107 min figure 25. clip mounting position for isolation test number 2 figure 26. screw mounting position for isolation test number 3 test conditions for isolation tests* 4-40 screw plain washer heatsink compression washer nut clip heatsink laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in . lbs is sufficient to provide maximum power dissipation capability. the compres- sion washer helps to maintain a constant pressure on the package over time and during large temperature excursions. destructive laboratory tests show that using a hex head 440 screw, without washers, and applying a torque in excess of 20 in . lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability. additional tests on slotted 440 screws indicate that the screw slot fails between 15 to 20 in . lbs without adversely affecting the package. however, in order to positively ensure the package integrity of the fully isolated device, on semi- conductor does not recommend exceeding 10 in . lbs of mounting torque under any mounting conditions. figure 27. typical mounting techniques for isolated package figure 27a. screwmounted figure 27b. clipmounted mounting information** ** for more information about mounting power semiconductors see application note an1040.
mje18204 mjf18204 http://onsemi.com 11 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j
mje18204 mjf18204 http://onsemi.com 12 package dimensions notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. style 1: pin 1. gate 2. drain 3. source dim a min max min max millimeters 0.621 0.629 15.78 15.97 inches b 0.394 0.402 10.01 10.21 c 0.181 0.189 4.60 4.80 d 0.026 0.034 0.67 0.86 f 0.121 0.129 3.08 3.27 g 0.100 bsc 2.54 bsc h 0.123 0.129 3.13 3.27 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.14 1.52 n 0.200 bsc 5.08 bsc q 0.126 0.134 3.21 3.40 r 0.107 0.111 2.72 2.81 s 0.096 0.104 2.44 2.64 u 0.259 0.267 6.58 6.78 b y g n d l k h a f q 3 pl 123 m b m 0.25 (0.010) y seating plane t u c s j r case 221d02 (isolated to220 type) ul recognized: file #e69369 issue d on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. mje18204/d switchmode is a trademark of semiconductor components industries, llc. north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland


▲Up To Search▲   

 
Price & Availability of MJE18204-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X